Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 39(2): 110685, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417712

RESUMO

Cellular heterogeneity of aortic valves complicates the mechanistic evaluation of the calcification processes in calcific aortic valve disease (CAVD), and animal disease models are lacking. In this study, we identify a disease-driver population (DDP) within valvular interstitial cells (VICs). Through stepwise single-cell analysis, phenotype-guided omic profiling, and network-based analysis, we characterize the DDP fingerprint as CD44highCD29+CD59+CD73+CD45low and discover potential key regulators of human CAVD. These DDP-VICs demonstrate multi-lineage differentiation and osteogenic properties. Temporal proteomic profiling of DDP-VICs identifies potential targets for therapy, including MAOA and CTHRC1. In vitro loss-of-function experiments confirm our targets. Such a stepwise strategy may be advantageous for therapeutic target discovery in other disease contexts.


Assuntos
Estenose da Valva Aórtica , Calcinose , Animais , Valva Aórtica/patologia , Células Cultivadas , Proteínas da Matriz Extracelular , Humanos , Osteogênese , Proteômica
2.
Front Cardiovasc Med ; 8: 678401, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239903

RESUMO

Objective: Aortic valve (AV) leaflets rely on a precise extracellular matrix (ECM) microarchitecture for appropriate biomechanical performance. The ECM structure is maintained by valvular interstitial cells (VICs), which reside within the leaflets. The presence of pigment produced by a melanocytic population of VICs in mice with dark coats has been generally regarded as a nuisance, as it interferes with histological analysis of the AV leaflets. However, our previous studies have shown that the presence of pigment correlates with increased mechanical stiffness within the leaflets as measured by nanoindentation analyses. In the current study, we seek to better characterize the phenotype of understudied melanocytic VICs, explore the role of these VICs in ECM patterning, and assess the presence of these VICs in human aortic valve tissues. Approach and Results: Immunofluorescence and immunohistochemistry revealed that melanocytes within murine AV leaflets express phenotypic markers of either neuronal or glial cells. These VIC subpopulations exhibited regional patterns that corresponded to the distribution of elastin and glycosaminoglycan ECM proteins, respectively. VICs with neuronal and glial phenotypes were also found in human AV leaflets and showed ECM associations similar to those observed in murine leaflets. A subset of VICs within human AV leaflets also expressed dopachrome tautomerase, a common melanocyte marker. A spontaneous mouse mutant with no aortic valve pigmentation lacked elastic fibers and had reduced elastin gene expression within AV leaflets. A hyperpigmented transgenic mouse exhibited increased AV leaflet elastic fibers and elastin gene expression. Conclusions: Melanocytic VIC subpopulations appear critical for appropriate elastogenesis in mouse AVs, providing new insight into the regulation of AV ECM homeostasis. The identification of a similar VIC population in human AVs suggests conservation across species.

3.
Circulation ; 138(4): 377-393, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29588317

RESUMO

BACKGROUND: No pharmacological therapy exists for calcific aortic valve disease (CAVD), which confers a dismal prognosis without invasive valve replacement. The search for therapeutics and early diagnostics is challenging because CAVD presents in multiple pathological stages. Moreover, it occurs in the context of a complex, multi-layered tissue architecture; a rich and abundant extracellular matrix phenotype; and a unique, highly plastic, and multipotent resident cell population. METHODS: A total of 25 human stenotic aortic valves obtained from valve replacement surgeries were analyzed by multiple modalities, including transcriptomics and global unlabeled and label-based tandem-mass-tagged proteomics. Segmentation of valves into disease stage-specific samples was guided by near-infrared molecular imaging, and anatomic layer-specificity was facilitated by laser capture microdissection. Side-specific cell cultures were subjected to multiple calcifying stimuli, and their calcification potential and basal/stimulated proteomes were evaluated. Molecular (protein-protein) interaction networks were built, and their central proteins and disease associations were identified. RESULTS: Global transcriptional and protein expression signatures differed between the nondiseased, fibrotic, and calcific stages of CAVD. Anatomic aortic valve microlayers exhibited unique proteome profiles that were maintained throughout disease progression and identified glial fibrillary acidic protein as a specific marker of valvular interstitial cells from the spongiosa layer. CAVD disease progression was marked by an emergence of smooth muscle cell activation, inflammation, and calcification-related pathways. Proteins overrepresented in the disease-prone fibrosa are functionally annotated to fibrosis and calcification pathways, and we found that in vitro, fibrosa-derived valvular interstitial cells demonstrated greater calcification potential than those from the ventricularis. These studies confirmed that the microlayer-specific proteome was preserved in cultured valvular interstitial cells, and that valvular interstitial cells exposed to alkaline phosphatase-dependent and alkaline phosphatase-independent calcifying stimuli had distinct proteome profiles, both of which overlapped with that of the whole tissue. Analysis of protein-protein interaction networks found a significant closeness to multiple inflammatory and fibrotic diseases. CONCLUSIONS: A spatially and temporally resolved multi-omics, and network and systems biology strategy identifies the first molecular regulatory networks in CAVD, a cardiac condition without a pharmacological cure, and describes a novel means of systematic disease ontology that is broadly applicable to comprehensive omics studies of cardiovascular diseases.


Assuntos
Estenose da Valva Aórtica/genética , Valva Aórtica/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Mapas de Interação de Proteínas , Proteômica/métodos , Espectrometria de Massas em Tandem , Transcriptoma , Valva Aórtica/patologia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Estudos de Casos e Controles , Células Cultivadas , Fibrose , Regulação da Expressão Gênica , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Índice de Gravidade de Doença , Transdução de Sinais/genética
4.
Front Cardiovasc Med ; 3: 44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27867942

RESUMO

Recent studies indicated that small calcified particles observable by scanning electron microscopy (SEM) may initiate calcification in cardiovascular tissues. We hypothesized that if the calcified particles precede gross calcification observed in calcific aortic valve disease (CAVD), they would exhibit a regional asymmetric distribution associated with CAVD development, which always initiates at the base of aortic valve leaflets adjacent to the aortic outflow in a region known as the fibrosa. Testing this hypothesis required counting the calcified particles in histological sections of aortic valve leaflets. SEM images, however, do not provide high contrast between components within images, making the identification and quantification of particles buried within tissue extracellular matrix difficult. We designed a new unique pattern-matching based technique to allow for flexibility in recognizing particles by creating a gap zone in the detection criteria that decreased the influence of non-particle image clutter in determining whether a particle was identified. We developed this flexible pattern particle-labeling (FpPL) technique using synthetic test images and human carotid artery tissue sections. A conventional image particle counting method (preinstalled in ImageJ) did not properly recognize small calcified particles located in noisy images that include complex extracellular matrix structures and other commonly used pattern-matching methods failed to detect the wide variation in size, shape, and brightness exhibited by the particles. Comparative experiments with the ImageJ particle counting method demonstrated that our method detected significantly more (p < 2 × 10-7) particles than the conventional method with significantly fewer (p < 0.0003) false positives and false negatives (p < 0.0003). We then applied the FpPL technique to CAVD leaflets and showed a significant increase in detected particles in the fibrosa at the base of the leaflets (p < 0.0001), supporting our hypothesis. The outcomes of this study are twofold: (1) development of a new image analysis technique that can be adapted to a wide range of applications and (2) acquisition of new insight on potential early mediators of calcification in CAVD.

5.
J Biol Chem ; 287(15): 11778-87, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22334665

RESUMO

Eukaryotic linker or H1 histones modulate DNA compaction and gene expression in vivo. In mammals, these proteins exist as multiple isotypes with distinct properties, suggesting a functional significance to the heterogeneity. Linker histones typically have a tripartite structure composed of a conserved central globular domain flanked by a highly variable short N-terminal domain and a longer highly basic C-terminal domain. We hypothesized that the variable terminal domains of individual subtypes contribute to their functional heterogeneity by influencing chromatin binding interactions. We developed a novel dual color fluorescence recovery after photobleaching assay system in which two H1 proteins fused to spectrally separable fluorescent proteins can be co-expressed and their independent binding kinetics simultaneously monitored in a single cell. This approach was combined with domain swap and point mutagenesis to determine the roles of the terminal domains in the differential binding characteristics of the linker histone isotypes, mouse H1(0) and H1c. Exchanging the N-terminal domains between H1(0) and H1c changed their overall binding affinity to that of the other variant. In contrast, switching the C-terminal domains altered the chromatin interaction surface of the globular domain. These results indicate that linker histone subtypes bind to chromatin in an intrinsically specific manner and that the highly variable terminal domains contribute to differences between subtypes. The methods developed in this study will have broad applications in studying dynamic properties of additional histone subtypes and other mobile proteins.


Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Sequência de Aminoácidos , Animais , Células 3T3 BALB , Cromatina/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Cinética , Camundongos , Microscopia Confocal , Conformação Molecular , Dados de Sequência Molecular , Ligação Proteica , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...